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We measure and calculate the sound attenuation within thermoacoustic boundary layers between solid
surfaces and xenon at its critical densityrc as the reduced temperaturet;sT−Tcd /Tc approaches zero.(Tc is
the critical temperature.) Using the known thermophysical properties of xenon, we predict that the attenuation
at the boundary first increases approximately ast−0.6 and then saturates when the effusivity of the xenon
exceeds that of the solid.[The effusivity is«;srCPlTd1/2, whereCP is the isobaric specific heat andlT is the
thermal conductivity.] The model correctly predictss±1.0%d the quality factorsQ of resonances measured in a
stainless steel resonators«ss=6400 kg K−1 s−5/2d; it also predicts the observed increase of theQ, by up to a
factor of 8, when the resonator is coated with a polymers«pr=370 kg K−1 s−5/2d. The test data span the
frequency range 0.1, f ,7.5 kHz and the reduced temperature range 10−3,t,10−1. We also predict that the
thicknessdT of the thermal boundary layer in the xenon decreases approximately ast0.4 until 2pfgz / src2d
<0.5. (z is the bulk viscosity,g is the heat capacity ratio, andc is the speed of sound.) Still closer toTc, dT

becomes complex and its magnitude increases. These predictions concerningdT have not yet been tested. We
deduce accurate values for the heat capacityCV and thermal conductivitylT for xenon in the range
10−3,t,10−1.
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I. INTRODUCTION

We plan to determine the bulk viscosity of xenon ten
times closer[in reduced temperaturet;sT−Tcd /Tc] to its
liquid-vapor critical point than has been possible heretofore
[1], to our knowledge. To do so, we must measure the dis-
persion and attenuation of sound at frequencies 1/100 of
those used previously. As a first step, we measured the fre-
quency response of a compact, acoustic resonator filled with
xenon at its critical densityrc. From the frequency-response
data in the range 100, f ,7500 Hz, we obtained the reso-
nance frequency and the attenuation for six resonant modes.
In general, the attenuation has contributions from the bulk
viscosity acting throughout the volume of the xenon as well
as contributions from the shear viscosity and the thermal
conductivity acting within thin thermoacoustic boundary lay-
ers at the interface between the xenon and the solid walls of
the resonator. Thus we can determine the bulk viscosity only
when the boundary layer attenuation is small and well under-
stood. In this paper, we show that the attenuation from the
boundary layers in our stainless steel resonator is indeed un-
derstood to within 1%.(Unless otherwise noted, standard
uncertainty is used throughout this paper.) Furthermore, we
show that the boundary attenuation is decreased by as much
as a factor of 8 by coating the interior surfaces of the reso-
nator with a thin layer of a polymer that conducts heat
poorly.

The present data span the reduced temperature range
10−3,t,10−1. These data test our understanding of ther-
moacoustic boundary layers becauset is small enough that
the singularities in the thermophysical properties of xenon
play a prominent role in the boundary attenuation. However,
t is large enough that the bulk viscosity makes only a small
contribution to the attenuation. In the future, we will analyze
the results closer toTc, where we expect the bulk viscosity to

dominate the attenuation and where gravitational stratifica-
tion plays an important role.

A standard model of the thermoacoustic boundary layer
[e.g., Eq.(9) in Ref. [2]] combined with the known thermo-
physical properties of near-critical xenon predicts that the
boundary attenuation is proportional tot−0.6 for t.10−3 and
then crosses over tot−0.8 in the fully asymptotic region close
to Tc. The present data disagreed with this prediction and led
us to refine the model of thermoacoustic boundary layers for
near critical fluids. The refined model predicts three phenom-
ena that do not appear in the standard model. First, the
boundary attenuation increases ast−0.6 (0.6 is an effective
exponent) as t→0 for t.10−3 as before; however, the in-
crease saturates when the effusivity of the xenon exceeds
that of the solid wall. [The effusivity is «;srCPlTd1/2,
whereCP is the isobaric specific heat andlT is the thermal
conductivity.] Second, the thicknessdT of the thermal bound-
ary layer depends upon the bulk viscosityz, anddT decreases
ast0.4 (0.4 is the observed effective exponent) ast→0 until
a minimum is reached at the condition

gvz

rc2 < 0.5. s1d

(Here,g;CP/CV andv;2pf.) Third, still closer toTc, dT
becomes complex and its magnitude increases. WhendT be-
comes complex, the spatial dependence of the thermal wave
changes; also, the usual phase relationship between the tem-
perature and pressure changes. These predictions concerning
dT have not been tested to date.

Previously, Carlés and Zappoli[3] discussed the thermal
relaxation of a near-critical fluid confined between two semi-
infinite, insulating walls. They applied a heat flux at one wall
and calculated the evolution of the temperature, pressure,
and fluid velocity.(In contrast with this work, heat transfer
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did not occur within either wall.) They found that the char-
acter of the temperature relaxation depended on whether the
initial temperature of the fluidTinitial was above or below the
characteristic temperatureTTransition. As Tinitial approached
TTransition from above, temperature gradients in their model
relaxed via the piston effect at increasing rates while the
time-dependent pressure remained nearly homogeneous
throughout the fluid. WhenTinitial was less thanTTransition,
temperature gradients relaxed more slowly asTc was ap-
proached. This slowing down occurs when the bulk viscosity
becomes large enough that pressure gradients develop near
the walls impeding the thermal expansion(piston effect). The
authors referred to the regions ofTinitial above and below
TTransition as “classical” and “viscous” regimes, respectively.
At TTransition, the viscous stress first reaches the same order of
magnitude as the time-dependent pressure.

We identify Ttransition defined by Carlés and Zappoli with
the temperature at which Eq.(1) holds. Our calculation in-
cludes heat flow in the walls; we find that the magnitude of
the viscous stress is limited by the effusivity of the walls. For
the polymer walls that we used, the viscous stresses were
significantly less than the acoustic pressure. In a future pub-
lication, we shall present a more complete discussion of the
influence of the bulk viscosity on acoustic measurements.

The results reported here were obtained with a double-
Helmholtz acoustic resonator consisting of two cylindrical
chambers connected by a small circular tube(see Fig. 1). In
its lowest-frequency mode, the enclosed xenon oscillated be-
tween the chambers through the connecting tube. This mode
is particularly advantageous for studies of near-critical fluids
because it has a low frequency corresponding to an acoustic
wavelength of 51 cm, yet the resonator is only 4.8 cm long
and 2.35 cm high. Thus this resonator is easily thermostatted
and stratification of the near-critical xenon in the Earth’s
gravitational field is insignificant in the data reported here.
Resonators of this type are also useful for measurements of
shear viscosity in dilute gases and, for such applications, are
referred to as Greenspan viscometers. Recent publications
[2,4–6] describe the theory of the Greenspan viscometer and
its application to shear viscosity measurements in eight
gases. When our resonator was filled with a dilute gas and
driven with an acoustic transducer, the primary damping oc-
curred in the viscous and thermal boundary layers character-
ized by the gas’s viscous diffusivityDv;h /r (also called
the kinematic viscosity) and thermal diffusivity DT
;lT/ srCPd, respectively. In dilute gases, thesesurface
damping mechanisms are orders of magnitude larger than the
viscous and thermalvolumeprocesses that contribute to the
so-called “classical” attenuation of freely propagating waves.
A third damping process occurs throughout the volume of
polyatomic fluids and fluids near their critical points. The
associated transport property is the bulk viscosityz, and it
causes significant attenuation when the product of the acous-
tic frequency and the relaxation time is order unity[7,8].

Kirchhoff [9] was the first to develop a theory for acoustic
attenuation in dilute gases due to heat flow near a rigid wall
with infinite heat capacity and infinite thermal conductivity.
We refer to such a wall as aperfect wall. Dissipation near a
wall occurs because the boundary conditions imposed on the
fluid produce large velocity and temperature gradients there.

Far from the wall, the temperature oscillates with amplitude1

T̃0<sg−1dT p̃0/ src2d due to the nearly adiabatic pressure
oscillations with amplitudep̃0. (T is the average tempera-
ture.) The temperature amplitude decreases exponentially

from T̃0 to zero at the perfect wall with the characteristic
thermal penetration lengthdT<s2DT/vd1/2. [Equation(A19)
is the exact expression fordT.] The lengthdT is the distance
that heat can diffuse during one acoustic cycle; in this work
0.5,dT,10 mm. The oscillating temperature gradient is on

the orderT̃0/dT; it drives heat flow between the fluid and the
wall, and it shifts the phase between the pressure and density
oscillations. Because of this phase shift, the acoustic wave
does irreversible work. The rate of acoustic energy loss per

unit area due to heat flow near a wall is of orderlTT̃0
2/ sTdTd.

Viscous friction imposes a no-slip boundary condition on
the acoustic velocityũ at the wall. That is, the tangential
component ofũ is zero at the resonator’s wall. Far from the
wall, ũ oscillates with amplitudeũ0< p̃0/ srcd. The velocity

1We use a tilde to distinguish acoustic fields from average values.

FIG. 1. Cross sectional views of the resonator are shown from
(a) the top and(b) the side, relative to the direction of gravity(g).
The nominal dimensions(in mm) were: 2rc1=16, Lc1=48, 2rc2

=23.5,Lc2=22, 2rd=4, Ld=15, andLi =10.5.
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oscillations exponentially vanish over the distancedv
=s2Dv /vd1/2<10 mm, whereDv is called either the viscous
diffusivity or the kinematic viscosity. The velocity gradient
near the wall is of orderũ0/dv; therefore the rate of acoustic
energy loss per unit area due to viscous friction is of order
hũ0

2/dv.
To lowest order in the quantitiessdv /Ld andsdT/Ld, where

L is the smallest physical dimension of the resonator, the
fractional energy lost per cycle for a given mode of adilute
gas enclosed by a perfect wall is[2,10]

Q−1 = qvdv + sg − 1dqTdT +
vz

rc2 , s2d

whereQ is the quality factor for the mode, andqv andqT are
mode-dependent geometric factors. A more general form of
Eq. (2) is discussed in Sec. II. For geometries with a high
degree of symmetry,qv andqT can be calculated analytically
from perturbation theory. For more complicated geometries,
qv and qT can be determined from numerical calculation or
from calibration measurements with a well-characterized gas
far from its critical point. The termvz / src2d in Eq. (2) is
negligible in dilute gases, except for polyatomic gases that
have internal modes which relax on a time scale comparable
to the acoustic period or in gases so dilute that the mean free
path becomes a significant fraction of the wavelength of
sound.

As the fluid approaches its liquid-vapor critical point, the
effusivity of the fluid increases ast−0.8. When the effusivity
of the fluid approaches the effusivity of the solid, Kirchhoff’s
“perfect wall” approximation fails. Then heat exchange be-
tween the fluid and the solid modulates the temperature of
the boundary and a temperature wave penetrates the solid. At
smaller values oft, most of the temperature gradient occurs
in the solid. Then, the generation of entropy and the thermal
boundary dissipation near the critical point are determined
by the effusivity of the solid, a quantity that is independent
of t.

For values oft equal to or smaller than those spanned by
the present data, the damping from bulk viscosity and ther-
mal diffusivity is much larger than damping from the viscous
diffusivity. The very weak divergence of the shear viscosity
st−0.043d is barely detectable in the present experiments.

II. ACOUSTIC MODEL

Morse and Ingard[8] present a theory of acoustic attenu-
ation in free space and near a solid boundary. However, their
theory neglects the thermal wave in the solid, and it assumes
that the attenuation is a small perturbation. Others[10,11]
have published extensions of the theory that include the ther-
mal and mechanical properties of the solid boundary, but
these extensions also assume thatDv, DT, andg−1 are small.
We extend the theory to include the thermal wave in a rigid
boundary, but we do not assume the attenuation is small. The
present theory is valid close to the liquid-vapor critical point
(one-phase region), where the dissipation is large and the
heat transport in the solid is significant.

The governing equations for the thermal boundary layer

dissipation are functions of the time-dependent fieldsp̃, r̃, T̃,

s̃, andũ. These fields represent the fluctuating pressure, den-
sity, temperature, entropy per unit mass, and fluid(acoustic)
velocity, respectively, and have time dependenceeivt by con-
vention. Throughout this discussion, we assume the ampli-

tudes of the fluctuating fieldsp̃, r̃, T̃, and s̃ are small com-
pared to their average valuesP, r T, andS. The amplitude of
ũ is assumed to be small compared to the speed of soundc.
Near the critical point, we further restrict the magnitudes of
the fluctuating fields to be small compared to the average

distance from the critical point, i.e.,T̃! sT−Tcd, p̃! sP
−Pcd, andr̃! sr−rcd, to ensure that the sound wave does not
influence the critical behavior. Local thermodynamic equilib-
rium is tacitly assumed. Thus hydrodynamics with no-slip,
no-temperature-jump boundary conditions is appropriate. To
ensure local equilibrium, we require that the wavelength, the
thicknesses of the boundary layers, and the dimensions of the
resonator be larger than the correlation length or the mean
free path, whichever is larger. The smallest boundary layer
thickness for this work was,2310−7 m at t<1310−3. At
this temperature, the correlation length was,1310−8 m,
and the mean free path was,3310−10 m. Local equilibrium
is therefore assured for the present work. Furthermore, we
estimate that the boundary layer thickness(at audio frequen-
cies) will be larger than the correlation length as close ast
<1310−5.

With these definitions, the basic equations are the linear-
ized Navier-Stokes equation

r
] ũ

] t
= − =p̃ + Sz +

4

3
hD=s= · ũd − h= 3 s= 3 ũd, s3d

the continuity equation

] r̃

] t
+ r= · ũ = 0, s4d

and the diffusion equation for heat flow

rT
] s̃

] t
= lT=2T̃. s5d

In addition, there are thermodynamic relationships between
the fluctuating pressure, density, temperature, and entropy
fields. We have neglected the entropy generation due to vis-
cous stress[8] in Eq. (5) because theu2 dependence in this
term leads to a nonlinear solution and amplitude dependent
dissipation, which was not observed. We estimate that omis-
sion of this term is justified as long as the acoustic pressure
is much less than 23104 Pa att=3310−4. We estimate that
the largest acoustic pressure at this temperature was
,100 Pa, therefore the omission is easily justified for this
work. At t=1310−5, the acoustic pressure must be much
less than 20 Pa to avoid these nonlinear effects. Our mea-
surements show that the acoustic pressure att=1310−5 is
less than 5 Pa.

Without further approximation to the system of equations,
we derive in the Appendix the relationships between the
fields for three possible wave modes: the propagating acous-
tic wave, the thermal wave(in the fluid and in the solid), and
the shear wave. To do so, we separateũ into two parts: a
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divergence-free partũvor that makes up the shear(vorticity)
wave and a curl-free partũl that contributes to both the
acoustic wave and the thermal wave. The scalar fields con-
tribute to only the acoustic and thermal waves. We obtain
relationships between the complex wave vectors and fre-
quencies for these modes. We require only that the ampli-
tudes of the oscillating temperature, density, and entropy be
linear functions of the acoustic pressure. As long as this re-
quirement is met, the solution is valid both near to and far
from the critical point.

The solid wall is assumed to be rigid, nonporous, and
smooth. Thermal expansion and sound propagation in the
solid are ignored. Heat flow in the solid is governed by the
diffusion equation

lTs=
2T̃s = rsTs

] s̃s

] t
= ivrsCPsT̃s. s6d

Therefore the solid supports a thermal wave characterized by
the solid’s effusivity«s=srsCPslTsd1/2 and thermal diffusivity
DTs=lTs/ srsCPsd, wherers is the density,CPs is the specific
heat per unit mass, andlTs is the thermal conductivity.(Un-
less stated otherwise, the subscripts identifies a property of
the solid.) The solid contains no heat sources, so heat can
enter or leave the solid only through the boundary with the
fluid. As in the fluid, the thermal wave in the solid vanishes
exponentially with a characteristic thermal penetration length
dTs=s2DTs/vd1/2. The temperature and heat flow across the
boundary are assumed to be continuous. These consider-
ations lead to the boundary conditions on the fields at the
wall:

uũ's0du = 0 srigid walld, s7ad

uũis0du = 0 sno slipd, s7bd

T̃s0d = T̃ss0d slocal equilibriumd, s7cd

flT='T̃s0dg = flT='T̃s0dgs senergy conservationd.

s7dd

The subscripts' and i designate, respectively, the compo-
nents perpendicular and parallel to the wall. The notations

T̃s0d and=T̃s0d stand for, respectively, the temperatureT̃ and

the gradient ofT̃ evaluated at the boundary.
As shown in the Appendix, the thermal boundary layer

thicknessdT comes naturally out of the fourth order differ-
ential equation for the acoustic fields, shown for the tempera-
ture as Eq.(A2), in terms of the dimensionless wave vector
q+, i.e.,

dT
2 = −

c2

v2

2i

q+
2 <

2DT

v

1 + igDv

1 + iDv
s8d

whereDv;sv /c2dsz+ 4
3hd /r. Far aboveTc whereDv is very

small, dT is real and has the physical interpretation as the
distance heat will diffuse during an acoustic cycle. As the
temperature is lowered towardTc on the critical isochore, the
value ofDT drops and, initially, so doesdT. However,z and

g grow rapidly ast→0 and eventually dominate. ThusdT
becomes complex and its magnitude passes through a mini-
mum, signifying the transition between the “classical” and
“viscous” regimes described by Carlés[3]. The minimum of
udTu occurs whengDv<0.5, and it coincides with the appear-
ance of a non-negligible thermal wave pressurep̃T within the
boundary layer. The magnitude ofp̃T is limited by the ther-
mal effusivity of the wall.

From the requirement that the temperature and the heat
flow are continuous across the fluid-solid boundary, we find
that the relationship between the thermal wave amplitudes in
the solid and fluid involves the ratio of the effusivities of the
two media,« /«s. Far from the critical point, this ratio is very
small and the resonator wall is very nearly isothermal. AsTc
is approached along the critical isochore,« /«s increases as
sCPlTd1/2~t−0.8 (−0.8 is an effective exponent) and eventu-
ally becomes much larger than 1. We define the reduced
temperaturetq as the value oft where «=«s; thus tq de-
pends on the effusivity of the solid.

For a standing wave in an acoustic resonator, we define
the resonance quality factorQ as 2p (total acoustic energy)/
(energy lost per cycle). The fractional energy lost per cycle
Q−1 is

Q−1 =

1

v
E

V

kĖltdV

E
V

fkEPlt + kEKltgdV

, s9d

whereĖ is the rate of energy loss per unit volume,EP andEK
denote acoustic potential and kinetic energies per unit vol-
ume, respectively, and the angle brackets denote a time av-
erage. From the fields that satisfy Eqs.(3)–(6) and the
boundary conditions(7), the time-averaged rate of energy
loss per unit volume[7] is

kĖlt = −
1

2
Re f= · sp̃* ũdg = −

v

2r
Imfp̃* r̃g −

1

2
Refs=p̃*d · ũg,

s10d

where the asterisk denotes complex conjugation. The time-
averaged acoustic potential and kinetic energies per unit vol-
ume are, respectively,

kEPlt =
1

4r
Refp̃* r̃g s11d

and

kEKlt =K1

2
rũ · ũL

t
=

1

4
ruũu2. s12d

In the steady state, the time-averaged potential and kinetic
energies are equal, so Eq.(9) becomes

Q−1 = Qv
−1 + QT

−1, s13d

where
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Qv
−1 = −

1

rv

E
V

Refs=p̃*d · ũgdV

E
V

uũu2dV

s14d

and

QT
−1 = −

E
V

Imfp̃* r̃gdV

E
V

Refp̃* r̃gdV

. s15d

Qv
−1 represents predominantly viscous dissipation, andQT

−1

represents predominantly thermal dissipation. Volume and
surface processes contribute to bothQv

−1 andQT
−1.

Equations(14) and (15) show how the dissipation de-
pends on the phase relationships betweenp̃, r̃, andũ. When
r̃ and p̃ are in phase, the quantityp̃* r̃ has no imaginary part
and there is no thermal dissipation. Equation(15) can also be
written in terms of the compressibilityk; r̃ / srp̃d,

QT
−1 = −

E
V

up̃u2ImfkgdV

E
V

up̃u2RefkgdV

. s16d

When the conditionsgvDT/c2!1 andgvDv /c2!1 are sat-
isfied, i.e., not too close to the critical point, the compress-
ibility is

k < kSF1 +
g − 1

1 + q
e−s1+idx/dTG , s17d

whereq<« /«s. [Equation(A28) in the Appendix is the ex-
act expression forq.] Equation(17) reduces to the adiabatic
compressibilitykS far from the wall sx→`d. (Note thatk
equals the isothermal compressibilitykT=gkS at x=0 for a
perfect wall [8].) In this level of approximation, the corre-
sponding dissipation terms become

Qv
−1 <

dv

2

R
S

uũiu2dS

E
V

uũu2dV

+
v

c2S z

r
+

4

3
DvD + Osd2d s18d

and

QT
−1 <

dT

2

g − 1

1 + q

R
S

up̃u2dS

E
V

up̃u2dV

+ sg − 1d
v

c2DT + Osd2d. s19d

The leading terms in Eqs.(18) and(19) are denotedQh
−1 and

Ql
−1 because they come from the surface viscous and thermal

dissipation, respectively. The lowest order contributions to
the volume dissipation(the second terms) have been sepa-
rated out from the other high order terms. In general, the

separation of the dissipation into surface and volume terms is
an approximation; the separation of the thermal and viscous
dissipation is an additional approximation. These separations
are useful for designing the experiments and for interpreting
the qualitative features of the results.

At the frequencies we use, the volume dissipation from
shear viscosity and thermal conduction is negligible.[In xe-
non att=1310−6 and 10 kHz, the volume dissipation from
shear viscositys4/3dsv /c2dDv is <2310−6 and the volume
dissipation from thermal conductionsg−1dsv /c2dDT is <5
310−5.] However, the leading volume dissipation term that
depends on the bulk viscosity,

Qz
−1 <

vz

rc2 , s20d

is important; this term is<0.1 at t=1310−6 and 10 kHz.
Because this paper focuses on the boundary layers, the analy-
sis in Sec. IV is restricted to the data for whichQz

−1 is less
than 0.8% of the total dissipation.

The expressions for the dissipation, Eqs.(18) and (19),
are familiar[2,12] except for the factors1+qd in Eq. (19).
Far from the liquid-vapor critical point, the energy content
per unit area within the thermal boundary layer of the gas is
much smaller than that in the solid, i.e.,q!1; then, s1
+qd<1, and the usual expression is recovered. The ratios of
integrals in Eqs.(18) and(19) are geometric factors that can
be calculated analytically for resonators with a high degree
of symmetry[2,12]. The integral ratios for the more compli-
cated resonator used in this work were estimated from nu-
merical computations[13] and then adjusted slightlys±2%d
to improve the agreement between the measurements far
from Tc and theory. We replace the integral ratios in Eqs.
(18) and (19) with 2qv and 2qT, respectively, and writeQh

−1

andQl
−1 as

Qh
−1 < qvdv s21d

Ql
−1 < sg − 1d

qTdT

1 + q
. s22d

Figure 2 shows plots ofQl
−1 for the Helmholtz mode of our

resonator for two wall materials: bare stainless steel and a
polymer coating. The solid curve in Fig. 2 showsQl

−1 for an
idealized resonator that has walls with an infinite thermal
conductivity. The dotted line in Fig. 2 shows the viscous
dissipationQh

−1 for the Helmholtz mode in both the steel and
the polymer-coated resonators. The crosses in Fig. 2 indicate
the reduced temperature whereq=1. The reduced tempera-
ture tq separates two regimes. Fort.tq, the temperature
gradient near the fluid-solid boundary occurs mostly in the
fluid; for t,tq, the temperature gradient occurs mostly in
the solid, where the thermophysical properties are indepen-
dent oft. Equation(22) predicts that fort!tq the thermal
dissipation is approximately
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Ql
−1 <Î 2

kac

qT«s

srCV
Îcd

. s23d

In the asymptotic critical regime,t!1 and Ql
−1~t0.08.

Therefore a maximum occurs inQl
−1 near tq. Solids with

smaller effusivity have larger values oftq and smaller
maxima inQl

−1.

III. ACOUSTIC ATTENUATION MEASUREMENTS

A. Resonator

The double-Helmholtz resonator shown in Fig. 1 was de-
signed to be compact and to have several widely spaced,
low-frequency, non degenerate modes. Widely spaced modes
are needed to accurately measure the frequency dependence
of the speed of sound and the attenuation of sound in near-
critical fluids. Degenerate modes must be avoided because
small imperfections of the resonator’s shape or small inter-
mode couplings will partially remove the degeneracy and
yield a frequency response composed of partially overlap-
ping peaks. Fits to overlapping peaks require many highly
correlated parameters; the correlations increase the uncer-
tainty of theQ’s determined by fitting such modes.

We mention four design features of the resonator in Fig.
1. (i) The resonator is deliberately asymmetric, i.e., the two
cylindrical chambers have equal volumes; however, their
length-to-diameter ratios differ. Because of this, the longitu-
dinal modes of the longer chamber are not degenerate with
modes in the shorter chamber. In this work we studied the
five lowest-frequency longitudinal modes of the longer
chamber as well as the Helmholtz mode. These modes had
nominal wave numbersv /c=12, 65, 130, 197, 261, and
326 m−1. (ii ) The two chambers are oriented at right angles
to each other to keep the resonator compact.(iii ) The cham-
bers and the tube connecting them are machined from a
single piece of metal to make a rigid, seamless structure. The
rigidity reduces the deformation of the resonator(and its as-

sociated energy dissipation) in reaction to the oscillating xe-
non. By avoiding seams, we reduce the chance of energy
dissipation in crevices.(iv) Thick s2.5 mmd diaphragms are
used to transmit sound into and out of the resonator. These
robust diaphragms withstand a differential pressure of
10 MPa, thereby eliminating the need for a pressure vessel.

Two identical resonators were made for this study. Both
resonators were machined from type-316 stainless steel. The
interior surfaces of both resonators were polished to a mirror
finish to ensure that their effective areas were independent of
the length scale set by the thermal penetration length in the
xenon s0.5,dT,10 mmd. The polishing removed tool
marks and scratches with a series of grits; the smallest grit
was 0.5mm.

The inner surface of one resonator was left bare. The in-
ner surface of the other resonator was coated with an 80
-mm-thick layer of poly-monochloro-para-xylylene, a poly-
mer known commercially as Parylene C[14]. The rms
roughness of the polymer surface was less than 0.08mm as
determined with atomic force microscopy for length scales
up to 80mm. The ratio of the topographic surface area to the
projected area was 1.0089 for areas between 3 and
2300mm2.

We chose this polymer as the coating material because it
has a low effusivity, it is chemically stable, and because it
adheres well to metal substrates. The polymer was deposited
from its vapor. The deposition process creates a nonporous
conformal film(no shadowing) and does not leave a solvent
residue that might contaminate the xenon. The thickness of
the polymer coating was estimated from micrometer mea-
surements and from mass measurements of samples that
were deposited when the resonator was coated. The esti-
mated polymer thickness wass85±15dmm. Using the ther-
mophysical properties supplied by the manufacturer, we es-
timated the effusivity of the polymer to be 277 kg K−1 s−5/2.
The effusivity that best fits our data is 370 kg K−1 s−5/2. Us-
ing the manufacturer’s data, we estimate the thermal penetra-
tion length in the polymerdTs=17 mm at 100 Hz. Therefore
the polymer thickness was 4.9dTs. We calculated the thermal
boundary dissipation when the xenon is in contact with a
layer of one solid on a semi-infinite slab of another solid. If
the layer is at least 5dTs thick, the thermal dissipation is
within 1% of that for an infinitely thick layer.

The two resonators were filled and studied in identical
ways but not simultaneously. One resonator at a time was
mounted inside a multishelled thermostat that had been used
to test a previous microgravity experiment(Critical Viscosity
of Xenon, CVX) [15]. The performance of the thermostat has
been described in a previous publication[16]. The resona-
tor’s temperature was measured with a thermistor located in
a machined well in the resonator’s body. The thermistor was
calibrated against an industrial platinum resistance thermom-
eter that itself had drifted by 15 mK since it was last cali-
brated on ITS-90. We used 15 mK as the combined standard
uncertainty of the thermistor’s calibration.

A 0.5-mm-i.d. copper tube was vacuum brazed to a port in
the resonator, through which gas could be removed or added
with ease. The other end of the copper tube was attached to
a small gas handling system through a high-pressure valve.
The gas-handling system consisted of a pressure gauge, a gas

FIG. 2. Predicted thermal boundary dissipation as a function of
reduced temperature in resonators made from stainless steel, a poly-
mer, and a perfect solid. The crosses indicate whereq=1. The
viscous boundary dissipation is also shown for comparison.
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storage vessel, and a leak detector connected by small-
diameter stainless steel tubing. With the valve closed, the
evacuated or filled resonator could be detached from the
manifold and weighed. Once the resonator was filled with
xenon to the critical density, the tube was crimped over a 1
-cm length, cut, and then brazed to permanently seal the
xenon inside.

B. Sample density and purity

The xenon’s density was determined from mass and vol-
ume measurements. We measured the combined volume of
the resonator, the fill tube, and the valve by a gas expansion
technique. We filled a known volume with argon gas and
measured its initial temperature and pressure. After succes-
sive expansions of the argon from the known volume to the
manifold and then to the resonator, we again measured the
temperature and pressure. We determined the argon’s density
from an equation of state[17] after each expansion. The
uncertainty in argon’s density was 0.02%. The volume of the
bare stainless steel resonator, its fill tube, and valve was
s19.501±0.004d cm3. For the polymer-coated resonator, the
combined volume wass18.822±0.007d cm3.

After the mass of the empty resonator was measured, we
added enough xenon to overfill the resonator by approxi-
mately 5%. The amount of xenon added was estimated from
the change in pressure of the storage vessel. Then the reso-
nator was placed back on the balance and small amounts of
xenon were released until the desired mass of xenon was left
in the resonator. The bare stainless steel resonator was filled
with s21.757±0.002d g of xenon at a density of
s1115.7±0.2d kg m−3. The polymer-coated resonator was
filled with s21.006±0.002d g of xenon at a density of
s1116.0±0.4d kg m−3.

The manufacturer(Matheson Gas Products[14]) stated
that the xenon was 99.995% pure. No additional analysis or
purification was performed.

C. Acoustic transducers

The thick diaphragms mentioned above were machined
into flanges that formed the ends of the cylindrically shaped
chambers. The flanges were sealed to the resonator body
with gold wire o-rings and high-strength alloy screws. Thin
piezoceramic disks were firmly cemented to the outside sur-
face of each diaphragm. These transducers generated and
detected sound. The polarization for these disks was oriented
perpendicular to the electrodes, which were bonded to the
flat faces. The voltage across the electrodes was coupled to
the acoustic pressure in the gas through stresses and strains
in the piezoceramic material caused by the flexure of the
diaphragm.

The three piezoceramic transducers attached to the dia-
phragms were identical. A transducer at one end of the long
chamber was used as the sound source. A transducer at the
other end of the long chamber was the detector. The same
pair of transducers was used to drive and detect all the
modes. The third transducer at the end of the short chamber
was used only for diagnostic purposes. A digital function

generator drove the source transducer with a sinusoidal volt-
age at frequencyf, and it provided the reference signal for a
digital, two-phase lock-in amplifier. The lock-in amplifier
measured the in-phase and quadrature signals, also atf, from
the detector. For each acoustic mode we studied, the drive
and detector voltages were measured at 11 frequencies span-
ning the full width of the resonance. The frequency was
scanned upward and downward to remove the effects of a
linear temperature drift. The measured signal was averaged
for 2 sec at each frequency to improve the signal to noise
ratio. A computer controlled the data acquisition.

When the piezoceramic source transducer was excited
with 7 V (rms), it generated a volume displacementdVc in
the chamber of approximately 1310−7 Vc, whereVc is the
volume of one chamber. This volume displacement did not
vary by more than 10% between 100 Hz and 6 kHz. The
diaphragm’s sinusoidal volume displacement generated a
pressure wave in the gas. The acoustic pressure at the reso-
nance frequency of the Helmholtz modefH was
Qrc2dVc/ s2Vcd. For the longitudinal modes, the acoustic
pressure was 2Qrc2dVc/Vc.

We determined the acoustic pressure from the detector
signal using a model for the electro-acoustic response of the
thick diaphragms and piezoceramic transducers. The model
yielded a detector sensitivity of 6mV/Pa for all the modes.
For the 7-V source excitation, the acoustic pressure atfH
ranged from 100 Pa at the highest temperaturest=4
310−2d to 9 Pa at the lowest temperaturest=3310−4d. For
the same excitation voltage, the acoustic pressure of the lon-
gitudinal modes was approximately ten times higher than
that of the Helmholtz mode because the longitudinal reso-
nances had higherQ’s and because the coupling to the lon-
gitudinal modes was four times more efficient.

Precautions were taken to avoid nonlinear dependence on
the drive level. The acoustic pressure amplitudes in all our
measurements were small enough to avoid hydrodynamic
nonlinearities. If the temperature oscillation is too large very
close to the critical point, then the average of the singular
thermodynamic properties over the acoustic cycle will differ
from the values at the average temperature and the true criti-
cal behavior will not be observed. This limit on the tempera-
ture oscillation places a stricter limit on the pressure ampli-
tude than hydrodynamic linearity. An acoustic pressure of
60 Pa will result in a 1% error in the bulk viscosity att=3
310−4, whereas 90 Pa is required to cause a 1% error inCP.
If nonlinear hydrodynamics or nonlinear averaging had been
important, then the measured resonance line shape would
have depended on the drive level. For all the modes we stud-
ied, a ten fold reduction in the drive level did not measurably
affect theQ. Also, we verified that the power dissipated in
the drive transducer did not heat the resonator significantly.

D. Determination of the critical temperature

To determine the critical temperatureTc of the xenon in
each resonator, we measured the resonance frequency of the
Helmholtz modefHsTd as a function of the temperature. In
the approximation thatfH is proportional to the thermody-
namic speed of sound(i.e., the zero-frequency speed of
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sound) in xenon at its critical density, the theory of critical
phenomena predictsfHsTd varies asta/2 (with a=0.110), and
therefore vanishes with a cusp at the critical point. We con-
sider first the effects of the earth’s gravity and then the effect
of nonzero frequency.

Under the earth’s gravity, near-critical xenon compresses
under its own weight and forms a vertically stratified sample
such that the density equalsrc at only one height.(This
height is midway between the top and bottom of the resona-
tor, if the average density of the xenon isrc.) In equilibrium,
the frequency of the Helmholtz modefHsTd is determined by
suitably averaging the speed of sound over the stratified
sample. We calculated the averaged values offHsTd by solv-
ing numerically the wave equation in stratified xenon with a
rectangular cross section 23.5 mm high. In this model,fHsTd
does not vanish atTc; instead,fHsTd has a shallow minimum
approximately 15 mK aboveTc. In principle, we could have
fit fHsTd to a refined model that accounts for the actual cross
section of the resonant cavities. However, the result would
still be uncertain because of our limited knowledge of the
equation of state of xenon. Instead, we chose to stir the xe-
non to reduce the effect of gravity onfHsTd. We recognize
that a fully stirred sample is not in thermal equilibrium. From
considerations in Ref.[18], stirring replaces the isothermal
density profile with an adiabatic density profile. The isother-
mal profile is sigmoidal and spans the density rangeDr
< ±0.07rc. The adiabatic profile is nearly linear in tempera-
ture sdT/dz<−1 mK cm−1d and density and spans the very
small density rangeDr< ±5310−5rc. In the adiabatically
stratified xenon,fHsTd has a much deeper minimum that is
within ±1 mK of Tc for our 23.5-mm high sample.

To stir the xenon, we ramped the temperature of the ther-
mostat downward. The ramping created small temperature
gradients in the xenon that drove convection. Before each

ramp, the resonator was warmed 0.42 K aboveTc and al-
lowed to equilibrate. Then the temperature was lowered(in
10–30 min) to just aboveTc, and the ramp was begun. The
data in Fig. 3 show that consistent results were obtained for
the Helmholtz frequencyfHsTd with ramp rates spanning a
factor of 10. At still faster ramp rates, the temperature of the
xenon lags behind the thermometer installed in the side of
the resonator. At slower ramp rates, evidence of stratification
was found.

We determined the precise location of the minima by fit-
ting fHsTd to a quadratic polynomial. For the polymer-coated
resonator, we observed the minimum at 16.5833°C(standard
deviation 0.0001°C) with four ramp rates 0.1, 0.2, 0.5, and
1.2 mK min−1. For the same range of ramp rates in the bare
steel resonator, the average location of the minima was
16.5828°C(standard deviation 0.0004°C). Based on these
measurements, we choseTc=16.583°C for both resonators.
The uncertainty ofTc must be at least ±1 mK due to the
adiabatic temperature gradient in the convectively stirred xe-
non as discussed above. Although these values ofTc are mu-
tually consistent, they might differ from each other by as
much as 2 mK; we have detected 2-mK changes when the

TABLE I. Results for the Helmholtz mode in the bare steel
resonator. The resonance frequencyf r and half widthgr were from
fits of Eq. (24) to the acoustic data and corrected according to Eqs.
(25) and(26) as discussed in the text. The speed of soundcHS was
determined from the acoustic data,k0 from a calibration with argon,
and Eq. (29). The fractional deviations ofQr

−1=2gr / f r from the
model, whereDQ−1/Q−1;sQr

−1−Qmod
−1 d /Qmod

−1 .

Ts°Cd t f rsHzd grsHzd cHSsm s−1d DQ−1/Q−1

16.683a 3.48310−4 161.7581 4.3963 84.942

16.704a 4.20310−4 164.7404 4.3307 86.422

16.732a 5.18310−4 168.1319 4.2189 88.084

16.767 6.39310−4 171.7045 4.1167 89.842 3.34310−4

16.810 7.88310−4 175.4707 3.9691 91.676 1.13310−3

16.864 9.72310−4 179.3597 3.8050 93.564 1.69310−3

16.939 1.23310−3 183.9478 3.6019 95.787 7.51310−4

17.023 1.52310−3 188.1982 3.4194 97.851 9.69310−4

17.125 1.88310−3 192.6129 3.2303 99.996 1.14310−4

17.252 2.31310−3 197.2016 3.0411 102.231 −1.04310−3

17.409 2.85310−3 201.9735 2.8629 104.566 2.02310−4

17.602 3.52310−3 206.9397 2.6839 107.001 −9.28310−4

17.841 4.35310−3 212.1077 2.5142 109.545 −1.72310−3

18.135 5.36310−3 217.5125 2.3580 112.217 −1.06310−3

18.498 6.61310−3 223.1647 2.2106 115.021 −1.12310−3

18.946 8.16310−3 229.0934 2.0748 117.973 −9.30310−4

19.498 1.01310−2 235.3336 1.9508 121.090 −4.57310−4

20.179 1.24310−2 241.9257 1.8378 124.394 −7.18310−5

21.020 1.53310−2 248.9156 1.7363 127.906 6.79310−4

22.057 1.89310−2 256.3622 1.6436 131.657 4.89310−4

23.337 2.33310−2 264.3278 1.5609 135.677 3.98310−4

24.915 2.88310−2 272.8887 1.4880 140.007 5.90310−4

26.862 3.55310−2 282.1399 1.4232 144.693 4.78310−4

aPoint omitted from the analysis.

FIG. 3. The Helmholtz mode resonance frequencyfH plotted as
a function of temperature for different temperature ramp rates. The
temperatures of the minima were used to determineTc.
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thermistor was removed from one resonator and replaced at a
later time. Furthermore, both values ofTc might differ from
ITS-90 by as much as 15 mK, the uncertainty of the ther-
mometer used to calibrate the thermistor.

We were concerned that the value ofTc determined from
fHsTd in the stirred sample might depend upon the acoustic
frequency. However, we found precisely the same value ofTc
by measuring the frequency of the first longitudinal mode
fL1sTd in the stirred fluid using the procedure described
above.(Note: fL1/ fH<5.)

IV. DATA ANALYSIS

We fit the in-phase and quadrature components of the de-
tector voltage with a standard acoustic resonance formula
[10],

u + iv =
Af

Fr
2 − f2 + B + Csf − f̄d. s24d

The complex parametersA, B, C, and Fr were adjusted to
minimize the squared deviations of Eq.(24) from the data.

Thus a total of eight independent parameters were adjusted
for each resonance. From this fit, we obtain the resonance
frequency f r =ResFrd and half widthgr =ImsFrd. The con-

stant f̄ is not adjusted, but it is fixed midway between the
maximum and minimum frequency of the data set.

The fractional rms deviations from the fits with Eq.(24)
were at most 0.001, corresponding to an uncertainty from
random noise of 0.001gr for both f r and gr. After an initial
analysis, we discovered that fits with Eq.(24) introduce sys-
tematic errors that grow asQ decreases. The errors arise
because the standard resonance formula ignores the fre-
quency dependence of the dissipation mechanisms that con-
tribute to the half width(gr ~ f−1/2 for surface losses and~f
for volume losses). In effect, the half width itself is fre-
quency dependent. We corrected these small systematic er-
rors by fitting Eq.(24) to numerical data generated from a
model that included the frequency dependent dissipation.
The errors in the fitted resonance frequencies andQ’s were
described by the empirical expressions

TABLE II. Results for the second longitudinal mode in the bare
steel resonator. The resonance frequencyf r and half widthgr were
from fits of Eq.(24) to the acoustic data and corrected according to
Eqs.(25) and(26) as discussed in the text. The speed of soundcL2

was determined from the acoustic data,k0 from a calibration tocHS

at one temperature, and Eq.(39). The fractional deviations ofQr
−1

=2gr / f r from the model, whereDQ−1/Q−1;sQr
−1−Qmod

−1 d /Qmod
−1 .

Ts°Cd t f rsHzd grsHzd cL2sm s−1d DQ−1/Q−1

16.683a 3.48310−4 1733.633 19.463

16.704a 4.20310−4 1764.795 17.990

16.732a 5.18310−4 1799.779 16.721

16.767a 6.39310−4 1836.791 15.649

16.810a 7.88310−4 1875.291 14.729

16.864a 9.72310−4 1915.326 13.890

16.939a 1.23310−3 1962.158 12.999

17.023a 1.52310−3 2005.206 12.237

17.125a 1.88310−3 2050.330 11.474

17.252a 2.31310−3 2097.320 10.723

17.409a 2.85310−3 2146.184 9.995

17.602a 3.52310−3 2197.195 9.289

17.841 4.35310−3 2250.418 8.617 109.547 −6.75310−3

18.135 5.36310−3 2306.108 7.979 112.217 −4.44310−3

18.498 6.61310−3 2364.537 7.383 115.021 −2.52310−3

18.946 8.16310−3 2425.968 6.828 117.973 −1.28310−3

19.498 1.01310−2 2490.765 6.318 121.090 −3.65310−4

20.179 1.24310−2 2559.332 5.851 124.393 8.08310−5

21.020 1.53310−2 2632.182 5.424 127.904 −1.23310−4

22.057 1.89310−2 2709.899 5.036 131.654 −6.84310−4

23.337 2.33310−2 2793.154 4.684 135.674 −1.83310−3

24.915 2.88310−2 2882.739 4.367 140.003 −3.47310−3

26.862 3.55310−2 2979.643 4.081 144.688 −5.70310−3

aPoint omitted from the analysis.

TABLE III. Results for the fifth longitudinal mode in the bare
steel resonator. The resonance frequencyf r and half widthgr were
from fits of Eq.(24) to the acoustic data and corrected according to
Eqs.(25) and(26) as discussed in the text. The speed of soundcL5

was determined from the acoustic data,k0 from a calibration tocHS

at one temperature, and Eq.(39). The fractional deviations ofQr
−1

=2gr / f r from the model, whereDQ−1/Q−1;sQr
−1−Qmod

−1 d /Qmod
−1 .

Ts°Cd t f rsHzd grsHzd cL5sm s−1d DQ−1/Q−1

16.683a 3.48310−4 4380.179 50.153

16.704a 4.20310−4 4455.946 42.840

16.732a 5.18310−4 4543.372 36.415

16.767a 6.39310−4 4635.958 31.379

16.810a 7.88310−4 4732.200 27.484

16.864a 9.72310−4 4832.780 24.433

16.939a 1.23310−3 4950.850 21.731

17.023a 1.52310−3 5060.094 19.785

17.125a 1.88310−3 5173.121 18.122

17.252a 2.31310−3 5290.882 16.654

17.409a 2.85310−3 5413.339 15.345

17.602a 3.52310−3 5541.155 14.140

17.841a 4.35310−3 5674.598 13.043

18.135a 5.36310−3 5814.284 12.034

18.498a 6.61310−3 5960.866 11.106

18.946a 8.16310−3 6115.000 10.257

19.498a 1.01310−2 6277.669 9.481

20.179a 1.24310−2 6449.880 8.775

21.020 1.53310−2 6632.904 8.131 127.907 −1.24310−3

22.057 1.89310−2 6828.219 7.547 131.658 −6.25310−4

23.337 2.33310−2 7037.521 7.019 135.679 −6.07310−4

24.915 2.88310−2 7262.794 6.538 140.009 −1.91310−3

26.862 3.55310−2 7506.531 6.103 144.695 −4.25310−3

aPoint omitted from the analysis.
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f r,corr − f r,fit

f r,fit
= −

1

8
Qsurf

−2 +
1

4
Qvol

−2 +
1

8
Qsurf

−1 Qvol
−1 −

1

8
Qsurf

−3 ,

s25d

Qcorr
−1 − Qfit

−1 = −
1

4
Qsurf

−2 − s0.263dQsurf
−1 Qvol

−1 +
1

4
Qsurf

−3 ,

s26d

whereQsurf
−1 andQvol

−1 are the surface losses(viscous and ther-
mal) and volume losses(bulk viscosity), respectively, in the
vicinity of the resonance. Equations(25) and(26) were used,
with Qsurf

−1 and Qvol
−1 estimated from our acoustic model, to

correct the fitted resonance frequencies and half widths for
the measurements in xenon. The largest corrections were for
the Helmholtz mode at the lowest temperature:uDf r / f ru
ø0.04% anduDQ−1/Q−1uø1.5%.

Values of the corrected resonance frequencies and half
widths for the Helmholtz mode and for the second and fifth

longitudinal modes at selected temperatures are presented in
Tables I–VI. Tables I–III contain the data for the bare stain-
less steel resonator. Tables IV–VI contain the data for the
polymer-coated resonator.

A. Model of the Helmholtz mode

To relate the concepts developed in Sec. III to measure-
ments in our Helmholtz resonator, consider the detailed
acoustic model for the Greenspan viscometer[2]. Equation
(25) in Ref. [2] gives the resonance condition for the Helm-
holtz mode when the fill duct is neglected. The sealed fill
duct for our resonator was only 2 cm long with a 0.5-mm
diameter, so gas flow in or out of the tube was negligible.
Numerical calculations[13] showed that the fill duct would
increaseqT by 0.7% and decrease the wave number by less
than 0.04% for the Helmholtz mode. These small constant
effects were accounted for in the calibration.

The complex resonance frequency of the Helmholtz mode
is given to sufficient accuracy by

SFH

f0

D2

=
1

1 + s1 − idsg − 1d
qTdT

1 + q

3

1 +
Ld

Ld + 2di

fGsik0Ld/2d − 1g

1 + s1 − idqvdv +
Ld

Ld + 2di

fGsGLd/2d − 1gF1 + s1 − id
dv

rd

G , s27d

where f0=k0c/ s2pd would be the resonance frequency if
there were no dissipation,rd is the duct radius, andLd is the
duct length. The end correctiondi, discussed in Ref.[2], is
on the order of 0.7rd here. We have defined the function
Gsxd; tanhsxd /x. The propagation parameterG is given by

G =
iv

c
Î1 + q + sg − 1dFT

s1 + qds1 − Fvd
s28d

with FT<s1−iddT/ rd and Fv<s1−iddv / rd. Equations(27)
and(28) have been modified from the expressions in Ref.[2]
by the factors1+qd to account for the effusivity of the solid.

From a calculated or calibrated value fork0, the speed of
sound can be determined from the measured resonance fre-
quency and half width with the expression

cH =
2psf r + gr − gbd

k0fResFH/f0d + ImsFH/f0dg
, s29d

where the partial half width due to the bulk viscositygb
= f rQz

−1/2 must be calculated. The total dissipation predicted
from the model is then

QH
−1 =

2 ImsFHd
ResFHd

+ Qz
−1. s30d

B. Derived xenon properties

1. Speed of sound

We used the measurements from the Helmholtz mode in
the uncoated resonator to derive the properties of xenon be-
cause this mode was most affected by xenon’s thermal con-
ductivity and least affected by bulk viscosity. The value ofk0
for the Helmholtz mode was calibrated with argon gas before
the resonator was filled with xenon. The calibrated value,
12.314 m−1, was within 0.4% of the value calculated numeri-
cally for this geometry by Mehl[13] and within 0.6% of an
estimate based on analytic formulations given in Ref.[2]. We
used this calibration in Eq.(29) to determine the speed of
sound cHS in xenon at its critical density. The results for
selected temperatures are plotted in Fig. 4(a) and listed in
Table I.

Kline and Carome[19] measured the speed of sound in
near critical xenon at 6 kHz a small resonant cavity. Their
results are plotted in Fig. 4(a). Kline and Carome’s measure-
ments have a larger uncertainty than ours because they did
not calibrate their resonator with a well-known gas nor did
they correct the measured resonance frequencies for bound-
ary layer perturbations. They report the uncertainty in their
speed of sound to be 1% fort.10−3 and up to 2% for
t,10−3. Our measurements agree within the scatter of their
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datas0.2%d far from Tc. Below t=10−3, Kline and Carome’s
values are 2% higher than ours. This level of disagreement is
not likely to be due to dispersion; it probably results from the
criterion that Kline and Carome used to determineTc. They
assumed that the speed of sound averaged over an isothermal
density profile has a minimum atTc.

2. Heat capacity and thermal conductivity

We used our measured speed of soundcHS, the isothermal
susceptibilityxT measured by Güttinger and Cannell[20],
and s]P/]Tdr from Swinney and Henry[21], to determine
CV andCP with the equations

CV =

TS ] P

] T
D

r

2

r2FcHS
2 −

r

xT
G , s31d

CP =
cHS

2 xT

r
CV, s32d

whereCP and CV are per unit mass quantities. The isother-
mal susceptibilityxT is related to the isothermal compress-
ibility kT by xT=r2 kT. See Table VII for the functions, co-
efficients, and exponents used to calculatexT, s]P/]Tdr, and
other quantities.

The largest uncertainty in our values ofCV comes from
the derivatives]P/]Tdr. From a scaled equation of state, the
dimensionless derivatives]P* /]T*dr;sTc/Pcds]P/]Tdr has
the form [21]

S ] P*

] T* D
r

= C1 + s2 − adP1
±utu1−a

+ s3 − 2a − 2bdrcH2
±utu2−2a−2b, s33d

whereC1, P1
±, and H2

± are constants, and the superscript ±
distinguishes the constants fort.0s+d andt,0s−d. In Ref.
[21] the valueC1=5.9253 was determined fromPVT data in

TABLE IV. Results for the Helmholtz mode in the polymer-
coated resonator. The resonance frequencyf r and half widthgr were
from fits of Eq.(24) to the acoustic data and corrected according to
Eqs.(25) and (26) as discussed in the text. The speed of soundcH

was determined from the acoustic data,k0 from a calibration tocHS

at one temperature, and Eq.(29). The fractional deviations ofQr
−1

=2gr / f r from the model, whereDQ−1/Q−1;sQr
−1−Qmod

−1 d /Qmod
−1 .

Ts°Cd t f rsHzd grsHzd cHsm s−1d DQ−1/Q−1

16.683a 3.48310−4 159.779 1.015

16.704a 4.20310−4 162.669 1.009

16.732a 5.18310−4 165.994 1.005

16.767a 6.39310−4 169.431 1.005

16.810a 7.88310−4 172.989 1.008

16.864 9.72310−4 176.674 1.015 93.410 3.39310−4

16.939 1.23310−3 180.993 1.022 95.684 1.76310−4

17.023 1.52310−3 184.959 1.029 97.773 4.47310−4

17.125 1.88310−3 189.086 1.036 99.947 1.68310−4

17.252 2.31310−3 193.375 1.045 102.206 6.93310−4

17.409 2.85310−3 197.832 1.051 104.552 −3.74310−4

17.602 3.52310−3 202.480 1.059 106.999 −4.27310−4

17.841 4.35310−3 207.329 1.065 109.552 −8.57310−4

18.135 5.36310−3 212.408 1.071 112.225 −6.86310−4

18.498 6.61310−3 217.736 1.076 115.028 −9.39310−4

18.946 8.16310−3 223.344 1.079 117.978 −1.08310−3

19.498 1.01310−2 229.262 1.081 121.090 −9.70310−4

20.179 1.24310−2 235.532 1.082 124.387 −9.50310−4

21.020 1.53310−2 242.199 1.081 127.891 −8.12310−4

22.057 1.89310−2 249.316 1.079 131.631 −8.00310−4

23.337 2.33310−2 256.948 1.076 135.641 −7.30310−4

24.915 2.88310−2 265.165 1.072 139.959 −3.61310−4

26.862 3.55310−2 274.051 1.068 144.628 −5.83310−4

aPoint omitted from the analysis.

TABLE V. Results for the second longitudinal mode in the
polymer-coated resonator. The resonance frequencyf r and half
width gr were from fits of Eq.(24) to the acoustic data and cor-
rected according to Eqs.(25) and(26) as discussed in the text. The
speed of soundcL2 was determined from the acoustic data,k0 from
a calibration tocHS at one temperature, and Eq.(39). The fractional
deviations of Qr

−1=2gr / f r from the model, whereDQ−1/Q−1

;sQr
−1−Qmod

−1 d /Qmod
−1 .

Ts°Cd t f rsHzd grsHzd cL2sm s−1d DQ−1/Q−1

16.683a 3.48310−4 1743.635 9.048

16.704a 4.20310−4 1774.991 7.524

16.732a 5.18310−4 1811.048 6.246

16.767a 6.39310−4 1848.482 5.310

16.810a 7.88310−4 1887.358 4.648

16.864a 9.72310−4 1927.542 4.180

16.939a 1.23310−3 1974.667 3.816

17.023a 1.52310−3 2017.916 3.599

17.125a 1.88310−3 2062.915 3.448

17.252a 2.31310−3 2109.643 3.343

17.409a 2.85310−3 2158.181 3.268

17.602a 3.52310−3 2208.805 3.215

17.841a 4.35310−3 2261.613 3.174

18.135a 5.36310−3 2316.890 3.141

18.498a 6.61310−3 2374.871 3.110

18.946a 8.16310−3 2435.866 3.079

19.498 1.01310−2 2500.238 3.046 121.090 3.46310−3

20.179 1.24310−2 2568.417 3.010 124.387 4.03310−3

21.020 1.53310−2 2640.902 2.968 127.891 4.35310−3

22.057 1.89310−2 2718.275 2.922 131.632 4.33310−3

23.337 2.33310−2 2801.233 2.871 135.643 4.28310−3

24.915 2.88310−2 2890.551 2.816 139.960 3.95310−3

26.862 3.55310−2 2987.156 2.758 144.631 3.19310−3

aPoint omitted from the analysis.
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the critical region aboveTc and in Ref.[22] the valueC1
=5.9368 was determined from vapor pressure data belowTc.
We used the values ofs]P/]Tdr from Ref. [21] and we took
the difference between the two values ofC1s0.2%d as an
estimate of the uncertainty ofs]P/]Tdr. The uncertainties of
xT and cHS are on the order of 0.1%; therefore the uncer-
tainty of our values ofCV is approximately 0.4%.

Kline and Carome[19] determinedCV for xenon in the
critical region from their sound speed measurements at
6 kHz. Since they too used thePVT data of Habgood and
Schneider[21] to determines]P/]Tdr, we estimate their un-
certainty in CV is 2%. Abovet=3310−3 Kline and Car-
ome’s values ofCV are about 1% higher than ours, whereas
belowt=3310−3 their values are about 1% lower than ours.
In contrast, our values ofCV are much smaller(by 11% at
t=10−3; by 9% att=10−2; and by 6% att=0.035) than the
values ofCV measured by Edwards, Lipa, and Buckingham
using a calorimeter[23]. Edwardset al. report a systematic
uncertainty that ranges from 6% att=0.001 to 12% att
=0.035. To summarize, we believe the present values ofCV
are the most accurate available in the range 10−3øtø10−1.

We fit the scaled dataCV
* =TcrcCV/Pc with the function

CV
* = A+t−as1 + C+t0.5d + B+, s34d

using a=0.110, to determine the amplitudeA+. Our result
A+=18.01±0.11 is 8% lower than the value from Edwardset
al. as reported in Ref.[20]. The correlation length amplitude
j0

+ was determined from the principle of two-scale-factor uni-
versality [24],

aPcA
+sj0

+d3

kBTc
= 0.0188 ± 0.0001, s35d

where kB is the Boltzmann constant. The valuej0
+

=s0.1866±0.0010d nm, which we obtained from Eq.(35),
agrees with the values0.184±0.009d nm from Ref. [20]
within the combined uncertainties.

The thermal conductivity was deduced by comparing the
measurements of theQ of the Helmholtz mode in the steel
resonator with the predictions of Eq.(30). This comparison
required, as inputs, the effusivity of stainless steel, the diffu-
sivity of stainless steel, and the shear viscosity of xenon
measured in microgravity by Berg, Moldover, and Zimmerli
[15]. We represented the shear viscosity with a polynomial
function of log10std; the coefficients are listed in Table VII.

The thermal conductivity was expressed in the form

lT = lb0 + lb1t + lb2 log10std + lb3flog10stdg2 + rCP
RkBT

6phj
,

s36d

where the parameterslb0, lb1, lb2, andlb3 were adjusted to
fit the data and are listed in Table VIII. The last term in Eq.
(36) is the critical part of the thermal conductivity, wherej
=j0

+t−vsv=0.63d is the correlation length andR=1.05 [21].
The thermal diffusivity calculated from Eqs.(32) and(36) is
within 10% of the values reported by Swinney and Henry
[21] over the range of the fit.

An uncertainty in the ratio of the integrals in Eq.(19)
propagates into an uncertain scale factor for the thermal con-
ductivity. The ratio of integrals from the numerical modeling
was 147.80 m−1; it was adjusted to 149.45 m−1 to best fit the
data. This adjustments1.1%d is a systematic uncertainty in
the values of the thermal conductivity given by Eq.(36).
After lT was determined using the stainless steel cell, theQ’s
of the longitudinal modes of the steel cell could be fit with-
out additional parameters. The same values oflT also fit the
Q’s of the Helmholtz mode of the polymer-coated resonator,
provided the effusivity of the polymer was adjusted to the
value 370 kg K−1 s−5/2. As shown in Fig. 5, this value ac-
counts for theQ’s of the Helmholtz mode of the polymer-
coated resonator to within ±0.2% over the entire range of the
data. The same values oflT and« account for theQ’s of the
longitudinal modes of the polymer-coated resonator.

C. Model of the longitudinal modes

From a lumped-impedance analysis similar to the one in
Ref. [2], the complex frequency for thenth longitudinal
mode of chamber 1 is given by

TABLE VI. Results for the fifth longitudinal mode in the
polymer-coated resonator. The resonance frequencyf r and half
width gr were from fits of Eq.(24) to the acoustic data and cor-
rected according to Eqs.(25) and(26) as discussed in the text. The
speed of soundcL5 was determined from the acoustic data,k0 from
a calibration tocHS at one temperature, and Eq.(39). The fractional
deviations of Qr

−1=2gr / f r from the model, whereDQ−1/Q−1

;sQr
−1−Qmod

−1 d /Qmod
−1 .

Ts°Cd t f rsHzd grsHzd cL5sm s−1d DQ−1/Q−1

16.683a 3.48310−4 4400.463 37.632

16.704a 4.20310−4 4475.998 30.068

16.732a 5.18310−4 4564.867 23.267

16.767a 6.39310−4 4657.730 18.140

16.810a 7.88310−4 4755.087 14.323

16.864a 9.72310−4 4856.674 11.554

16.939a 1.23310−3 4974.099 9.367

17.023a 1.52310−3 5083.198 7.986

17.125a 1.88310−3 5196.312 7.057

17.252a 2.31310−3 5313.965 6.379

17.409a 2.85310−3 5436.229 5.908

17.602a 3.52310−3 5563.682 5.551

17.841a 4.35310−3 5696.592 5.294

18.135a 5.36310−3 5835.753 5.098

18.498a 6.61310−3 5981.701 4.944

18.946a 8.16310−3 6135.225 4.818

19.498a 1.01310−2 6297.234 4.701

20.179a 1.24310−2 6468.838 4.607

21.020a 1.53310−2 6651.293 4.511

22.057a 1.89310−2 6846.034 4.423

23.337 2.33310−2 7054.846 4.330 135.642 −3.11310−3

24.915 2.88310−2 7279.672 4.236 139.961 −3.95310−3

26.862 3.55310−2 7522.841 4.142 144.632 −4.16310−3

aPoint omitted from the analysis.

GILLIS, SHINDER AND MOLDOVER PHYSICAL REVIEW E70, 021201(2004)

021201-12



FLn

f0n
= s1 + DndÎ s1 + qdf1 − s1 − idqvndvg

1 + q + s1 − idsg − 1dqTn8 dT

, s37d

where f0n=k0nc/ s2pd, andDn is the solution of

tanSk0nLcDn

2
D = − F s1 − idsg − 1dqTn9 dT

1 + q + s1 − idsg − 1dqTn8 dT
G

3
k0nLc

4
s1 + Dnd. s38d

The geometric factorqTn has been divided into a contribution

qTn8 =qTnLc/ sLc+2Rcd from the cylindrical sides and a contri-
butionqTn9 =qTn−qTn8 from the end plates. The speed of sound
consistent with measurements with these modes is deter-
mined by

cLn =
2psf r + gr − gbd

k0nfResFLn/f0nd + ImsFLn/f0ndg
, s39d

and the total dissipation is

TABLE VII. Thermodynamic and transport properties obtained from the literature.

Symbol Value Symbol Value

rcskg m−3d 1116.0±1.7a a 0.110±0.003b

PcsMPad 5.84c b 0.325±0.002b

R 1.05d n 0.630±0.002b

Susceptibilitye xT=src
2/Pc

dxT
* , xT

* =G+t−gf1+a1tD+a2t2D+a3t3Dg

G+ 0.0577±0.0001 a1 1.29±0.03

D 0.496 a2 −1.55±0.2

g 1.241±0.002 a3 1.9±0.5
s]P/ ]Td

r= s Pc/Tc
ds]P* / ]T* d

r, s]P* / ]T* d
r given by Eq.(33)

C1 5.9253d rcH2
+ −1.9201d

P1
+ 2.1122d

Shear visocosityf hsmPa sd=h0+ o
n=1

5
hnflog10stdgn

h0 62.386 h3 1.9906

h1 15.300 h4 0.29167

h2 8.0579 h5 0.01797

aSee Ref.[26].
bSee Ref.[27].
cSee Ref.[28].
dSee Ref.[21].
eSee Ref.[20].
fThis function reproduces the shear viscosity from Ref.[15] to ±0.05mPa s. The experimental uncertainty was ±0.024mPa s[15].

TABLE VIII. Critical amplitudes and thermal conductivity for xenon from this work. Also effusivities of stainless steel and the polymer
coating.

Symbol Value Symbol Value

Tcs°Cd 16.583±0.015 j0
+snmd 0.1866±0.001

A+ 18.015±0.27 RB 0.0427

B+ −18.04±0.27 «ssskg K−1 s−5/2d 6389

C+ 0.42±0.1 «prskg K−1 s−5/2d 368.4

Thermal conductivitylT given by Eq.(36)

lb0sJ K−1 m−1d 0.01851 lb2sJ K−1 m−1d 0.005415

lb1sJ K−1 m−1d −0.005811 lb3sJ K−1 m−1d 0.002067
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QLn
−1 =

2 ImsFLnd
ResFLnd

+ Qzn
−1. s40d

The results of these measurements are shown in Figs. 4–8.
The calculated viscous dissipation has been subtracted from
the total measured dissipation and the difference has been
plotted as a function of the reduced temperature for all the
measured modes. The calculated thermal dissipation also is
plotted for comparison. The peaks in the deviation plots for
the first longitudinal mode(see Fig. 8) are due to interfering
modes in the thermostat or the support structure.

The Helmholtz mode in the uncoated resonator was cali-
brated with argon as discussed above. The other modes were
calibrated att=0.01 by a small adjustment ofk0 and the
polymer thickness such that the speed of sound equaledcHS.
The adjusted values ofk0 differed from Mehl’s numerical
estimates by less than 1%. The adjusted polymer thickness
82 mm was well within the error of the independent mea-
surements85±15d mm. Figure 4(b) shows the consistency
with which the speed of sound was determined from each
mode compared to the reference valuecHS. The sound-speed
measurements from all the modes in the polymer-coated

resonator agree to within 0.01%. Likewise, the sound-speed
measurements from all the modes in the bare steel resonator
agree to within 0.01%. However, the results from the two
resonators disagree by as much as 0.1%. The disagreement
would be explained if the xenon in the polymer-coated reso-
nator had a 0.15% lower density and a 5-mK higher critical
temperature than the xenon in the bare steel resonator. Al-
though a 0.15% density difference and a 5-mK critical tem-
perature difference are both small, we cannot account for
either from the known, quantifiable experimental uncertain-
ties. It is possible that a small quantity of xenon leaked out of
the polymer-coated resonator during the short time interval
in which we cut the crimped fill tube and soldered the tube
closed.

D. Bulk viscosity

In the low-frequency limit, the bulk viscosity is approxi-
mately [25]

z =
RBrcc

2tj

1 + qB
, s41d

wheretj is the relaxation time for critical fluctuations, given
by

TABLE IX. Dimensions and mode parameters of the bare stain-
less steel resonator.

rdsmd 0.00200 rd8smd 0.00300

Ldsmd 0.01475 Lismd 0.01176

Rc1smd 0.00800 Rc2smd 0.01175

Lc1smd 0.04800 Lc2smd 0.02220

Mode k0sm−1d qvsm−1d qTsm−1d

Helmholtz 12.314 470.07 149.45

1st long. 65.79 164.45 165.03

2nd long. 129.57 136.49 178.92

3rd long. 195.86 130.57 166.91

4th long. 260.98 123.13 171.67

5th long. 326.23 125.00 168.34

TABLE X. Dimensions and mode parameters for the polymer-
coated resonator.

rdsmd 0.00192 rd8smd 0.00308

Ldsmd 0.01490 Lismd 0.01184

Rc1smd 0.00792 Rc2smd 0.01167

Lc1smd 0.04780 Lc2smd 0.02204

Mode k0sm−1d qvsm−1d qTsm−1d

Helmholtz 11.952 509.65 149.26

1st long. 65.935 166.14 168.11

2nd long. 129.89 137.90 183.16

3rd long. 196.33 120.04 176.76

4th long. 261.69 113.20 181.80

5th long. 326.99 114.92 178.27

FIG. 4. (a) The speed of soundcHS determined from the Helm-
holtz mode with bare stainless steel plotted versus the reduced tem-
perature. The speed of sound measured by Kline and Carome[19]
at 6 kHz. (b) Deviations of the speed of sound determined from
each mode fromcHS shown in the upper graph. Note: the six modes
for each resonator are mutually consistent at the level of ±0.01% of
cHS.

GILLIS, SHINDER AND MOLDOVER PHYSICAL REVIEW E70, 021201(2004)

021201-14



tj =
6pj3h

kBTc
, s42d

andqB is the ratio of the background part ofCV to the sin-
gular part ofCV,

qB ;
CV,background

*

CV,singular
* =

CV
*

A+t−a − 1. s43d

From our determination ofCV, we found thatqB varied
smoothly from −0.6155 att=0.035 to −0.4327 att=0.006.
Theoretical values for the dimensionless constantRB range
from 0.0285(renormalization group theory) to 0.086(mode
coupling theory) [25]. The value that was consistent with our
data wasRB=0.0427. The bulk viscosity is predicted[25] to
have the strongest temperature dependences,t−1.9d of any
known property and becomes negligible outside the critical
region.

The dissipation from bulk viscosityQz
−1 was calculated

from Eq.(20) with the low-frequency limit of Onuki’s theory
[25] for bulk viscosity and used in Eqs.(29), (30), (39), and
(40). For the Helmholtz mode in the uncoated resonator, the
dissipation from bulk viscosity was less than 0.3% of the
total dissipation down to aboutt=6310−4. Therefore the
plot in Fig. 5 is almost entirely the thermal dissipation at the
surface of the resonator. For the other modes, only data for
which the estimated dissipation from bulk viscosity was less
than 0.8% of the total dissipation were included in the de-
viation plots in Figs. 4(b) and 8.

In the future, we plan to use the resonators described here
to measure the bulk viscosity very close toTc. Using all the
acoustic modes discussed here, we will measure the bulk
viscosity over nearly two decades in frequency; with the
low-frequency Helmholtz mode, we will reachvt=1 closer
to Tc than any previous measurements. As we have shown
here, the polymer coating will reduce by the thermal bound-
ary dissipation up to a factor of 8 and thereby increase the
accuracy with which the volume dissipation from bulk vis-
cosity may be measured. The results closer toTc and the
determination of the bulk viscosity will be the subject of a
forthcoming paper.

V. CONCLUSIONS

The measured acoustic dissipation in near-critical xenon
shows a prominent plateau for the Helmholtz mode(Fig. 5)
and, to a lesser extent, for the longitudinal modes(Figs.
6–8). These results are direct evidence of thermal boundary
dissipation being limited by the thermophysical properties of
the solid wall.

We demonstrated an eight-fold reduction in the thermal
boundary dissipation after coating a stainless steel resonator
with a low-effusivity polymer(see Fig. 5). Such a reduction
in thermal dissipation will be necessary in order to measure
the low-frequency dissipation from bulk viscosity close to
the critical point in future experiments.

To analyze the data, we formulated a theory for acoustic
dissipation in a fluid that is bounded by a rigid wall with the
condition that the temperature and heat flux across the

boundary be continuous. The theory is valid both near to and
far from the critical point; it includes volume and surface
dissipation from thermal conduction, shear viscosity, and
bulk viscosity.

We measured the speed of sound in xenon as a function of
reduced temperature in the range 0.0006,t,0.03. Using
the measured sound speed and attenuation, the isothermal
susceptibility from Ref.[20], and s]P/]Tdr from Ref. [21],
we derivedCV, CP, and the background terms for the thermal
conductivity in Eq.(36). These derived properties were used
to determine the amplitudeA+=18.01 for the singular part of
CV (with a=0.110) and the correlation length amplitudej0

+

=0.1866 nm. Although the data do not extend far into the
asymptotic region, the agreement with other values is re-
markable.

The onset of bulk viscosity is evident from the excess
dissipation(over the thermal and viscous dissipation) indi-
cated by the upturn at lowt of the measured dissipation
shown in Figs. 6–8. It is also evident that the dissipation
from the bulk viscosity increases as the frequency increases
in qualitative agreement with theory. The onset of bulk vis-
cosity is more evident in the polymer-coated resonator be-
cause the thermal dissipation is smaller than it is in the bare-
steel resonator.

FIG. 5. Comparison of the measured thermal boundary dissipa-
tion with theory. (a) The measured thermal boundary dissipation
versus reduced temperature for the Helmholtz mode in bare steel
(P) and polymer-coated(o) resonators. The bulk viscosity is negli-
gible for the Helmholtz mode in this temperature range. Theory for
thermal boundary dissipation(—). (b) The fractional deviations of
the measured dissipation from theory versus reduced temperature.
We fitted the data for the steel resonator by adjusting the coeffi-
cients oflT in Table VIII. The data for the polymer-coated resona-
tor were fitted by setting the effusivity of the polymer to the value
370 kg K−1 s−5/2.
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APPENDIX

In this Appendix, we extend the exact solution[8] for
linear acoustic waves in a dissipative fluid to include heat
conduction in a rigid wall bounding the fluid. The derived

relationships between the fieldsp̃, T̃, r̃, s̃, andũ are valid for
single-phase fluids, both near to and far from the critical
point, bounded by rigid walls. The walls have finite heat
capacity and thermal conductivity.

Equations(3)–(5) support three types of waves: a propa-
gating acoustic wave, a thermal wave, and a shear(vorticity)
wave. The thermal and shear waves are evanescent waves
and do not propagate. Each of the scalar fields is a sum of
two of these waves: an acoustic wave and a thermal wave,
i.e.,

p̃ = p̃ac+ p̃T, sA1ad

T̃ = T̃ac+ T̃T, sA1bd

r̃ = r̃ac+ r̃T, sA1cd

s̃= s̃ac+ s̃T. sA1dd

The velocity fieldũ is a sum of all three waves,

ũ = ũac+ ũT + ũvor. sA1ed

The acoustic wave components of the fields are coupled to-
gether through Eqs.(3)–(5) and a number of thermodynamic
relationships. The thermal wave components are similarly
coupled together. The shear wave decouples from the equa-
tions for the other waves. The amplitudes of the three types
of waves are related to each other only through the boundary
conditions Eqs.(7a)–(7d).

We eliminate all the fields butT̃ from Eqs. (3)–(5) to
obtain the fourth-order differential equation,

S=2 +
v2q+

2

c2 DS=2 +
v2q−

2

c2 DT̃ = 0, sA2d

where the full temperature oscillation is written asT̃=T̃+

+T̃− such that=2T̃±=−svq± /cd2T̃±. The dimensionless wave
numbersq+ andq− are given by the expressions

FIG. 6. Dissipation due to bulk viscosity and the thermal bound-
ary layer versus reduced temperature. Two longitudinal modes are
shown:(a) L1 for steel(l) and polymer-coated(L) resonators and
(b) L2 for steel(j) and polymer-coated(n) resonators. Theory for
thermal boundary dissipation(—). The small kink in the data for
the L1 mode in the polymer-coated resonator nearsT−Tcd /Tc

=10−2 is caused by an accidental resonance in the thermostat.

FIG. 7. Dissipation due to bulk viscosity and the thermal bound-
ary layer versus reduced temperature. Two longitudinal modes are
shown:(a) L3 for steel(m) and polymer-coated(n) resonators and
(b) L4 for steel(.) and polymer-coated(,) resonators. Theory for
thermal boundary dissipation(—).
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q±
2 =

1 + iDv + igDT ± J

2iDTs1 + igDvd
, sA3d

where

Dv =
v

c2S z

r
+

4

3
DvD , sA4d

DT =
v

c2DT, sA5d

and

J2 = s1 + iDv − igDTd2 + 4iDTsg − 1d. sA6d

(The reader is cautioned not to confuseq± with the integral
ratiosqv andqT that are discussed in the main text.) The two

solutionsT̃± correspond to(i) the propagating acoustic wave

T̃ac=T̃− characterized by the wave numberkac=vq−/c and

(ii ) the thermal waveT̃T=T̃+ characterized by the wave num-
ber kT=vq+/c. The other fieldsp̃, r̃, s̃, and ũl also satisfy
Eqs. (A2)–(A6). These fields will be a superposition of
acoustic and thermal wave components as well. The relation-
ships among the fields, which are consistent with Eqs.
(3)–(5) and (A2)–(A6), are

p̃± =
gā

g − 1

Pc

Tc
s1 − iDTq±

2dT̃±, sA7d

r̃±

r
=

q±
2

1 − iDvq±
2

p̃±

rc2 , sA8d

s̃± =
iCP

T
DTq±

2T̃±, sA9d

and

ũl± = −
1

1 − iDvq±
2

1

ivr
=p̃±. sA10d

The quantity

ā ;
Tc

Pc
S ] P

] T
D

r

sA11d

is a dimensionless parameter that remains finite at the liquid-
vapor critical point(ā<6 for most substances at the critical
point). Here, the subscripts + and − refer to the thermal and
acoustic wave components, respectively.

As an aside, we note thatDv andsg−1dDT are very small
in the dilute-gas limit. To lowest order the wave numbers are

kT < s1 − idS v

2DT
D1/2F1 +

i

2
sg − 1dsDT − DvdG sA12d

and

kac<
v

c
F1 −

i

2
Dv −

i

2
sg − 1dDTG . sA13d

These approximations are consistent with the lowest order
approximations published elsewhere[8]. The parameterkac is
mostly real with a small imaginary part, consistent with an
attenuated propagating wave. In contrast, the parameterkT
has a large imaginary part. Therefore the thermal wave is a
heavily damped evanescent wave whose amplitude is signifi-
cant only near the fluid’s boundary.

The shear waveũvor completely decouples from the other
fields. In addition to being divergence free,ũvor satisfies
=2ũvor=−kv

2ũvor with kv=s1−id /dv. Like the thermal wave,
the shear wave is heavily damped and exists only near the
boundary. Since the acoustic wave alone cannot always sat-

FIG. 8. Dissipation due to bulk viscosity and the thermal bound-
ary layer versus reduced temperature.(a) The lowest and highest
frequency modes are shown: the Helmholtz modes(H) for steel(P)
and polymer-coated(s) resonators and the fifth longitudinal modes
(L5) for steel s+d and polymer-coateds3d resonators. Theory for
thermal boundary dissipation(—). (b) The fractional deviations of
the measured dissipation from theory versus reduced temperature
for all the modes in the steel resonator.(c) Same as(b) but for the
polymer-coated resonator. Only data for which the dissipation from
bulk viscosity was less than 0.8% of the total dissipation is shown.
The peaks in the data for the L1 mode are due to accidental reso-
nances of the thermostat.
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isfy all the boundary conditions simultaneously, just enough
of the thermal and shear waves are present to satisfy these
conditions.

To proceed, we will zoom in on a small portion of the
fluid/solid interface. The distance from the wall will be des-
ignated the coordinatex. The coordinatesy and z give the
distance parallel to the wall. The spatial dependence of the
wave fields separates into two functions that describe wave
motion perpendicular and parallel to the wall. For the acous-
tic pressure, we write

p̃ac= p̃ac1FsxdCsy,zdeivt. sA14d

The functionsFsxd and Csy,zd satisfy the separate wave
equations

d2F

dx2 = − kac'
2 F and=i

2C = − kaci
2 C, sA15d

wherekac'
2 +kaci

2 =kac
2 and =i

2=s]2/]y2d+s]2/]z2d. If u is the
incident angle measured from the surface normal, thenkaci

=kac sin u.
Likewise, the thermal wave has the form

T̃Tsr ,td = T̃T1QsxdCsy,zdeivt sA16d

such that

d2Q

dx2 = − kT'
2 Q = − kT

2scos2 wTdQ sA17d

and kT'
2 +kaci

2 =kT
2=svq+/cd2 in accordance with Eq.(A2).

Here, the anglewT is given by

sin wT = 1
2s1 + iddTkac sin u, sA18d

and the thermal penetration length in the fluiddT, defined by
dT

2;−2i /kT
2, is

dT = S2DT

v
D1/2F 2s1 + igDvd

1 + iDv + igDT + J
G1/2

. sA19d

On the scale ofdv anddT, the wall appears as an infinite flat
plane. If the solid wall occupies the half spacex,0, the
plane-wave form for the thermal wave in the fluid is

Qsxd = expf− s1 + idx coswT/dTg. sA20d

Far from the critical point,dT is indistinguishable from
s2DT/vd1/2. Indeed, for the data presented heredT differs
from s2DT/vd1/2 by less than 0.6%. As the critical point is
approached, the theory predicts thatudTu at first decreases
approximately ast0.4 (effective exponent), while Im sdTd
grows. The minimum value ofudTu is expected to occur when
gDv<0.5 corresponding tot=4310−4 for the Helmholtz
mode andt=1310−3 for the L5 mode. As discussed in the
Introduction, we identify the location of this minimum as the
transition between the classical and viscous regimes, as de-
fined by Carlés and Zappoli[3]. This coincides with the ap-
pearance of a pressure gradient within the boundary layer.
The location of the minimum value for all the modes was
outside the range of data analyzed for this work. Closer to
the critical point, Eq.(A19) predicts that

dT < s1 + idS2DT

v
D1/2F gDv

2s1 + iDvdG1/2

sA21d

with a magnitude approachingudTu<100s2DT/vd1/2 at t
<1310−6. Further details of this phenomenon are beyond
the scope of this paper. A full discussion will be included in
a forthcoming publication on the analysis of data very close
to Tc.

Similarly in the solid, we seek the solution to the diffusion
equation

=2T̃s = − kTs
2 T̃s =

2i

dTs
2 T̃s sA22d

that remains finite asx→−` and satisfies the boundary con-
ditions (7c) and (7d). The desired solution has the form

T̃ssr ,td = T̃s1Csy,zdexpfs1 + idx coswTs/dTsgeivt,

sA23d

where

sin wTs= 1
2s1 + iddTskac sin u sA24d

so thatkTs'=kTs coswTs=ÎkTs
2 −kaci

2 .
The divergence-free(transverse) velocity field ũvor that

satisfies

=2ũvor = − kv
2ũvor =

2i

dv
2ũvor sA25d

with = · ũvor =0 has the form

ũvorsr ,td = ũv1sy,z,tdexpf− s1 + idxscoswvd/dvg,

sA26d

where sinwv= 1
2s1+iddvkac sin u andkv coswv=Îkv

2−kaci
2 .

The boundary conditions[Eqs.(7a)–(7d)] on the total ve-
locity and temperature fields can be recast into a boundary
condition on the acoustic wave,

n̂ · ũacs0d =
s1 − iddv

2 coswv
=i · ũacs0d +

s1 + id
2vr

kac
2 dT coswT

1 − iDvq−
2

3
1 − igDTq+

2

1 − igDTq−
2

1 + tanwTtan wv

coswTs+ q coswT

3fcoswTsp̃acs0d − 1
2s1 − idqdTn̂ · ='p̃acs0dg ,

sA27d

where

q ;
«

«s
F1 + iDV + igDT + J

2s1 + igDVd G1/2

. sA28d

In terms of the acoustic pressure alone, the boundary condi-
tion on the acoustic wave is
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n̂ · ='p̃acs0d =
ikacp̃acs0d

L FscoswTs+ q coswTdsin u tan wv

−
s1 + id

2

1 − igDTq+
2

1 − igDTq−
2 s1 + tanwT tan wvd

3kacdT coswT coswTsG , sA29d

where

L ; coswTs+ q coswT

3F1 −
i

2

1 − igDTq+
2

1 − igDTq−
2 s1 + tanwT tan wvdkac

2 dT
2G .

sA30d

Equations(A27)–(A30), with Eq. (A10), lead to an expres-
sion for the effective acoustic admittance of the boundary
layer per unit area,

bac; −
rcn̂ · ũacs0d

p̃acs0d

=
s1 + idkac

2

1 − iDvq−
2

c

2v
Fdv sin2 u

coswv
−

1 − igDTq+
2

1 − igDTq−
2

3s1 + tanwT tan wvdKdT coswTG , sA31d

where

K ;
1

L scoswTs− q sin wT tan wvd. sA32d

In the dilute gas limit, Eq.(A31) reduces to

bac< s1 + id
v

2c
fdv sin2 u + sg − 1ddTg sA33d

in agreement with Morse and Ingard[8].
In terms of the acoustic pressurep̃ac, the resultant fields

are

T̃ =
g − 1

gā

Tc

Pc

1

1 − iDTq−
2 hp̃ac− Kp̃acs0d

3expf− s1 + idx coswT/dTgj, sA34d

T̃s =
g − 1

gā

Tc

Pc

J
1 − iDTq−

2S1 −
i

2

1 − igDTq+
2

1 − igDTq−
2kac

2 dT
2Dp̃acs0d

3expfs1 + idx coswTs/dTsg, sA35d

p̃ = p̃ac−
1 − iDTq+

2

1 − iDTq−
2Kp̃acs0dexpf− s1 + idx coswT/dTg,

sA36d

r̃ =
1

1 − iDvq−
2

kac
2

v2Hp̃ac−
1 − igDTq+

2

1 − igDTq−
2Kp̃acs0d

3expf− s1 + idx coswT/dTgJ , sA37d

s̃=
ilTTc

rvPcT

g − 1

gā

1

1 − iDTq−
2hkac

2 p̃ac− kT
2Kp̃acs0d

3expf− s1 + idx coswT/dTgj , sA38d

ũac= −
1

1 − iDvq−
2

=p̃ac

iv r
, sA39d

ũT =
kac

2 dT

2rv

1 − igDTq+
2

1 − igDTq−
2

K
1 − iDvq−

2 fdT=ip̃acs0d

− n̂s1 + idp̃acs0dcoswTg

3expf− s1 + idx coswT/dTg, sA40d

and

ũvor =
1

ivr

J + K
1 − iDvq−

2S1 −
i

2

1 − igDTq+
2

1 − igDTq−
2kac

2 dT
2D

3f=ip̃acs0d + n̂ikacp̃acs0dsin u tan wvg

3expf− s1 + idx coswv/dvg, sA41d

where

J ;
q

L s1 + tanwT tan wvdcoswT. sA42d
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